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This chapter covers neural network modehing (also known
ax connectionist or pavalicl-disributed provessing modeling)
as 2 tool for studying developmental cognitive neuroscience.
Neural nevwork models provide a powerful method for

exploring

he complex relation bevween brain development
and cognitive development. This chapter reviews what
neural network models consist of, why modeling 1 useful,
and how models have helped to address fundamental

questions about development. Important challenges for this

methodalogy are also discussed, along with productive direc-
tons for future work within the neural network modeling
{ramework.

Newral newwork models provide a powerful ol in
the study of developmental cognitive neuroscience. Such
models implement nearal processes in computer simula-
tions, i the form of mathemaocal equadons that char-

actevize newal activity and  learning, Neural neowork

simulations thus aflow an exploration of the vole of

newral processes w behavier. The modeling methodol-

ogy  provides  an important complement o other
methods, by bailding upon findimgs from other swdies
and pointing the way toward new studies o acdvance
owr understanding of the relation berween brain and
behavior.

In this chapter, we cover nevral nenwork models of cog-
nitive development from the perspective ol answering three
erivical methodological questions: why, what, and how?
More speciheally, we

sxplain it s important to use

neural network models in the study of developmental cog-
nitive neuroscience and to explain more abour what the
nuts and bols of neural neswork models entail. We then
describe Ao neural network models have been wsed w0
address fundamental developmental questions about the
origing of knowledge and how change occurs. We also
discuss challenpes relevant 0 each of these issues of the
why, what, and how of neural network modeling, This
chapter aims o confer an appreciation of the potential
contributions of neural network models 1o the advancement

of developmental cognitive neurcscience, as well as the

ability o eritically evaluate both the over- and underselling
of this methodole
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Why

Tirst, we describe some of the benefits of neural network
modcling {adapted from O'Relly and Munakata, 20060,
see alse Seldenberg, 199%; Rumelhare and McCleltand,
F986; Elman et al., 19961 All these benefits are demon-
strated by specific models covered later i the “How”
section, and they support a productive interchange between
modeling work and other methodologies. Some of these
benefits are arguably conferred to some degree by purely
verbal theorie

; however, implementing a working model
of a theory is both more demanding and more powerlud
than simply stating the theory, and so provides greater
benefits.

Mobpers Avtow Contron Models can be manipulated,
lestoned, tested, and observed much more precisely than the
thing being modeled (whether the thing is a single newron,
a small collection of neurons, a human infant, a monkey,
and so onj. Such control enables a clearer picture of the
causal role of different factors. For example, in this chaper,
we will see how such control allows an assessment of Jong-

term effects of word frequencics in language learning.

Mopers Henr Us to Usperstand Beravior  With such
control, we can walch a maodel in action 1o get a sense of
why behavior unfolds as it does. Scemingly unrelated or
even contradictory behaviors can be related to one another
in nonobvious ways through common newral neowork
mechanisms. Further, neural network maodels can provide
an fmportant bridge between neural and cognitive aspects
of behaviar, Lesioned models can also provide insight into
behavior [ollowing specific types of brain damage and, in
tuen, inte normal functioning. To this chapter, we will see
how models can help us to understand various potentially
puzziing aspects of children’s behavior, including nonlinear
trajectories in their development.

Moners Dean witen Gomprgxiry  Complex, emergent
phenomena (the brain s more than the sum of its parts; can
be captured in models in principled, sauslying ways, Such
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emergent phenomena arise from the complex interactions
of multiple elements of a model, without being obviously
present in the behavior of the individual elements. Without

the models and the principles. such complexity might

otherwise be lost in vague, verbal arguments. In this chapeer,

we will see how models have provided insight into the

emergence of complex phenomena in domains as diverse
as infant and children’s  semantc

object  processing

development.

Mopers Are ExpLicir
forces vou to be explicit about your

Creating an implemented model
assumptions, For
example, what do children encode about a partcular task,
and how? How do they subsequentdy process this informa-
tlon? What kinds of mechanisms support their learning
this task? Explicitness about such assumptions confers many
potential benchts, novel,

including the generaton of

empirically testable predictions and the deconstruction of

black
advantages of such explicitness in a model that deconstrucs

box constructs. In this chapter we will see the
the notion of an object-permancence concept and leads to
novel predictions subsequently tested in infans.

What

We will see all these benefits in action when we consider how
models have been used to explore issues in cogmuve devel-
opment, in the next section. First, we consider the nuts and
boits of what neural network models are, which will provide
the foundation for understanding their contributions. Here,
we focus on five critical elements of neural network models:
units, weights, net input and activation functons, and fearn-
ing algorithms {or more extensive treatments of these and
nuis and bolts of neural network models, see Elman
et al., 1996; O’Reilly and Munakata, 20
;\’I(?Ci(r]laﬂ(E,

constructs while capturing important aspects of psychologi-

other
00; Rumelhart and
1986). Each of these elements maps onto neural

cal processing, allowing neural network maodels to provide
an important step in understanding the relation between
newral and cognitive development.

Unirrs anp Wetaars  Neural network models consist of two
basic elements: units and weights (igure 22121 In models
most closely ded to the underlving biology, each unit

corresponds to a peuron, the activity of each unit corresponds
to the spiking of a neuron, and each weight corresponds to
a synapse (the swength of the weight corresponds (o the
clficacy of the synapse). Models of psychological phenomena
are much more sealed down; single units correspond 1o
collections of neuwrons or even entire brain regions, the
activity of each unit corresponds to the ove
these neurons, and the weights between units represent
synapses beoween the groups of neurons.

368 METHODOLOGICAL PARADIGMS

rell firing rates of

Units communicate with one another by means of their
weights, Bach unit recelves activity from other units by way
of its weights, and i enough such mput s received, the unit
becomes active. The unit then sends this activity 1o other
units by means of its weights to those units, an action thag
in turn influences the activity of those units.

In most necwork simulations of behavior, units are orga-
nized into lavers. An input layer {or layers: receives infor-
mation that reflects the external world,

. Networks ar

(’ll\'li‘()l]?l)(‘l‘iiﬁ when ih(‘}'

patterns of activity on the units in the laver

described “perceiving” their

receive this mput information, with the parteular wpe of

perception {secing versus hearing, and so on] depending on
the modality thar the mput Faver represents. In the simplis-
do example shown i figure 22.1h, the network sees the

word “dog” when 1ts Inpur units for the lewers &, 0, and g

are activated. An output laver (or lavers) produces patterns

of activity that are interpreted in erms of some response
behavior. For example, the network in figure 22.1b can say

either “cat” or “dog,” by actvating the corresponding

output unit. {For much more realisic models of word

reading, which incorporate semantic representations and
more complex phonological and arthographic representa-
tions, see Harm and Sewdenberg, 200 1996;

O’Reilly and Munakata, 2000

of hidden layers may sit between the input and the ourput

4 Plaur er al.,
Additionally, seme number
layers, providing the network with the capability to trans-
form input information in useful ways to support meaning-
ful behavior.

Units can be connected by means of their weights 1 a

igure 22 1a) Feedforward weights connect

variety of wa

i to units in the hidden laver]

units in the mput lave L and

Lo units in the Output 1;1}-'(‘1‘__:‘:_

units i the hidden layer(s)
Feedback weights may connect the units in the reverse divec-
tion {output to hidden o input). Lateral weights connect

units to other units i the same laver. Recurrent weighis

connect units 0 themselves. In addition o these ciflerent

directons of connectivity, weights may vary i whether they
arg excitatory Increasing the input to the receiving unit} or

Recur-

rent weights that are excitatory allow ums o maintain thelr

inhibitory (decreasing the input to the receiving unit).

activity by continuing to excite themselves. Lateral wei

that are inhibitory lead units within a laver to compete with
one another for acavity, also helping active units to maintain
their activity by inhibiting the acuvity of competing units.

As will be discussed further, “knowledge™ in the neural
network framework takes the form ol patterns of activity
across the processing units and patterns of connectivity in

the weights. Knowledge is thus embaodied in the processing

machinery In contrast with the maditional compurter meta-
structures [RAM] are separable
3. This

knowledge in the neural network framework makes it a

phor, In which knowledge

from processing [CPU embodied

m the form of

character of



inte and weimichits
Unitg and weight Lazerat

eigh

Ozt vrls
3

s Ll

Mel tnputs Activations,
and Leanng

1, Nemowrd sees the word Tde

B

Froure 22,1
inclicates activation levels; arrows indicate weights.

particularly useful methodology for developmental cogni-
tve neuroscicnce, given the focus of this Beld on under-
standing how knowledge 15 embodied by the brain, and
given the parallels between principles of neural communi-
cation and relations among units and weights in neural

network models,

Ner Isepur and Acrivarion Fuxorions
computing a unit’s activity is broken down nto two steps:
computing the net input w the unit and then computing the
unit’s activity as a functon of the net input. The inpus o a
unit are weighted by the sirength of the connecuons from

the sending units; the stronger the connection, the more the

sending unit activity contributes to the net input to the

receiving umt. Mathematically, the net input o a unit §

My expressed as

MUNAKATA AND STEDRON:

3. Nemwrd vy

The process of

NEURAL NETWORK MODFELS OF COGNITIVE DEVELOPMENT

7 Recurrent weight

Fagdiorward waghls

g .

A dingram of representative nearal nerwork architeenure (A and processing (Bl Circles indicate units, and their shading

where oy is a weight from unie { w unitj, and «, is the activity
of unit @

The actvaton function specifies how the units in a
network update their activity as a function of this net input.

Activation functions are typically S-shaped figure 22,2},

based on a sigmoidal activation function of the following
torm:

where g 1s the activation of the unit and _‘;\i% its net input.
This 3 shape reflects two important aspedts of nevral activ-
ity, regarding the nonlinear response of nearons m relation
to their inputs. First, the unit 15 not goaranteed o become
active just becauase it is receiving some amount of input. As
indicated by the lower-left part of the S-shaped curve, this
net input must get above a certain threshold for the unit o
become very active. Second, once the unit v active o some

36Y




Sigmpida Aclivalion Funclion

1.0
c
L0858} ]
5
T 64} 3
&

02}

—4 -7 & z 4
Hat inpul

Froure 22.2  The sigmoeidal activation funcioen, reflecting the

nonlinear TCSHOnSe of neurons in I‘(“ii‘di(_}i} to their I'HPIEES.

degree, it 15 not guaranwed to become much more active
with increasing amounts of input. As indicated by the upper-
right part of the S-shaped curve, a unit cannot substantally
increase its activity level beyond a certain point, even with
further netinput. This nonlinearity in the activaton function
allows multiple layers of units to carry out complex compu-
tations that are not possible with units using linear actvation
functions.

LEARNING ALGORITHMS
the form of changes to the weights, which are viewed as

Learning in neural networks takes

corresponding to changes in the efficacy of synapses. Such
changes occur as a result of a nerwork’s experience with its
environment, and thev affect how the network responds o
subsequent inputs. Because weights may take a value of zero
fwhich s equivalent to no connection), this learning process
allows for the possibility of adding new connections Hwhen
a zero weight is increased) and pruning away existing
connections {when a weight goes to zero) {cf. Shuliz, 2006,
for more specialized mechanisms for adding and pruning
connections). Here, we consider two of the primary types of
learning algorithms used in neural network models—-self-
organizing and error driven.

Self~organizing algorithms are so named because they
govern learning without specifying a particular target per-
formance; that is, they lead units to orgamze their weights
themselves based on their local nputs, rarher than in terms
of meeting partcular goals. One of the most common self-
organizing algorithms is a Hebbian algorithm (Hebb, 1949,
whereby units that are simultaneously active increase the
weight between them. Mathematically, the basic form of this

Augy = i‘u}/

S
where '#z/wg reflects the change n the weight from unit < to
unit j. and Freflects a learning rate parameter. This form of

learning rule s

learning has typically been used by modelers focused on
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Miller. Strvker,
14895, because the algorithm is grounded in the known bio-

biological plausibility fe.g., Keller. and
logical learning mechanisms of long-term potentiation and
long-term depression (Artola, Brocher, 1989,
Bear and Malenka, 19947, the algorithm is not

very good at solving complex tasks (whereas humans arel, a

and Simger,

However,

fact that has led other modelers w wrn to move powertul,
ervor-driven algorithims.

Ervor-driven  algorithms are 30 named because they
govern learning based on the discrepancy between a net-
work’s performance and its target performance. One of the
mast comman error-driven algorithims 15 the backpropaga-
Hinton, and Williams, 19863,

ton algorithm (Rumelbart,

whereby the difference between a unit’s activity and s
mrget activity s computed apd propagaied  backward
through the nevwork, so that the resulong weight changes
reduce the unit’s error. In this wav. the backpropagaton
algorithm allows networks to learn to solve complex tasks, a
necessary criterion for the modeling of human behavior,

Mathemartically, the backpropagation Jearning algorithin s

vhere 7?{41 reflects the contribution of a given unit 1o a net-

\\ork s érror. Although the backpropagation algorithm has

been criticized for being biolegieally implausible in the
details of ity implementaton le.g.. in the backward propaga-
ton of error terms for which there 18 no neural evidencey,
biologically plausible versions have been implemented
{Hinton and MeClelland, 1988; Hinton, 1989; \[(a\tldn
1990; O'Retlly, 1996; O'Reilly and Manakara, ‘2( i These
versions avold the implausibility problems of l)nckl.)r(;)l.}agzv
tion by ndirectly communicating errer information through
the standard mechamsms of neural communicaton, the
. Further,

these activity signals reflect events in the world and net-

passing of acuvity signals by means of weights
works’ expectations regarding the events, such that error
isformation can be computed based on the discrepancies
between expectations and outcomes. withoue requiring an
Such error-

xplicit teacher that provides target signals.

driven algorithms thus allow for the mnmmt‘d exploration
the
existence of such functionally simtlar algorsthms suggests
that

of simulating performance on complex tasks. Further,

models  using  backpropagation, while  biologically

implausible in their dewaited implementaton, should not
simply be discounted; lessons from them are likely to prove
relevant w0 the biologically plausible. funcdonallv similar
implementations.

As we have shown, learning algorithins can be specified

in precise mathematical terms; however, it is Important w

note that it can nonctheless be difficule o predict exactly
how networks will come o solve tasks and how they will
develop, given the complex, nonlinear interactions hetween

network units and the environment, Similarly, even with a

Bl
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precise specificadon of how synaptic changes ocour in the

we would not nec

brain, E able 1o explain, for
example, the complex neural bases of how children learn wo

react, Understanding changes at the level of the synapse/

weight does not ranslare direcdy into understanding behav-

1or. Thus, even with o precisely specified learning algorithm,

i ean be very difficult to predict the hehavior of networks of

We

nearal bases of behavior by exploring why nerworks develop

Ay mml}h'\i{\-’ can thevelore gain insights into the

as they do,
Hou

Now that we have some sense of why we might want to use

nevral network models as a methodology, and what they

consist of, we are in a position to consider fiow they have
cantributed (o the study of developmental cognitive neuro-

selence, Newrad networks have been used o address many

different facets of cogninve deve inchuding in-

lopment,

dividual dilferences and disorders Joanisse and Seider
D003 2002: Morton and
Munakata, 2005, Oliver et al,, Z@ﬁ Thomas and Karmilofi-
Sk, 2002, 2003}, const cucfivist mechanisims of develop-
ment {Schi Shultz, 2003, 2006),
coordination of separate specialized brain systems {Jacobs,
19949: M 19495:
20041, W the influence of

g)c‘n'v‘puﬁ.d and motor development on cognition {

iherg,
MacDonald and Christiansen,

esinger and Parist, 2001 the

areschal, Plunkett, and Harris, Munakata,

eriman and Miranda, 2004, carly
cobs

2004,

brain

20073 Westermann and Mareschal,

development of

and Dominguerz,
the
regions (Shrager and Johnson, 1

hierarchically
1996

anel organtzecd

Many neural network models focus more on the role of

fearning in development than on matwatonal changes fof.

Shrager and Johnsen, 19965 T fact, many aspects ol devel-
opiment that may appear (o be maturatdonal, such as critical
periods, arise in neural networks as a resulc of learning {Lilis
2000; Elman, 1993; McCGleland et al,
Rohde and Plaut, 1999, Seidenberg and Zevin, 20065

Hinm;u‘l\:

and Lambon-Ralph,
1999,

many hiclogical changes that may appear o be
hardwired, such as 2 reduction in the plastcity of synapses
across development, have been shown to depend on ex pcnw
and

cnee can be reversed i experience 13 wil thheld

Quinlan, stein. and Bear, 1999,

Heve.

we focus on neural network explorations of two

fundamental issues in cognitive development: the origins of

our knowledge and mechanisms of change. We aim o

convey an overall sense of how neural network maedels can
speak to these developmental lssues, but because of space
constraints, we can only briefly cover two examples within
cach ol these areas.

CIRIGING

Where does our knowiedge come from? Questions

of origins [whether of knowledge, life, the universe, ete form
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the basis for some of the most ineresting, challenging, and
hotly debated issues. In the context of the origins of our

knowledwe, the debate has taken the form of nature versus
e

nurture, and more recently of specifving the nature of the

interactions between them. Neural network models have
Been used to explore the origing ol knowledge in a variety

language {e.g., Rumel
G86; Plunket and Sinha, 1991; Eiman, 1993,
1999; Plaut and Kello, 19989 Onnis

numerical understanding (Dehaene

of domains, and
McClelland, 1
Harm and Seidenberg,
tiansen, 20053,
and Changeux, 1993
solving \_E\‘lc(‘lelkmd
Schmide, 1994
arigins of knowlvdge of objects, specihcally, ¢

nchuding nart

and Chris
: Verguts and Fias, 20045, and problem
1989, 1995 Shultz, Mareschal, and
. Here, we focus on models exploring the
welr continulty
and their permanence.,
(Myject continuaty.  Young infants appear to be sensitive 1o the
continuity of object motion, the fact that objecss move only
on connected paths, never jumping lrom one place
another without rraveling a path in between, For example,
infants as voung as 2.5 months leok longer at events in which
abjects appear to move discontinuously than at otherwise
similar events in which the same objects move continuously
{Spelke et al., 1992). Such longer looking times are taken as

an indication that infants find the discontinuous events

unnatural, and so passess sorne understanding of object con-

tinuity. What are the origins of such knowledge? Some
researchers have concluded that an understanding of object
continuity is part of our innate core knowledge. given infants’
very early sensitivity to it, and the apparent difliculty in
learning such information given that objects are rarely con-
tinvously visible in our environment (Spelke et al., 1G9,

However, as many rescarchers have noted, it i not clear

what the label “innate” really tells us about the nature of the
1996; Thelen and Smith,

That is, does calling infants’ sensitivity

origins of knowledge w"ﬂmzux etal.,
1994: Smich, 1999}
to the continuity of object about

“innate” tell us anything =

how infants come to be sensitive to this principle, or about
the mechanisms underlying such sensitivity?

In contrast, the neural network approach focuses atten-
tion on exactly these kinds of issues, because such mecha-
pisms must actually be implemented in a working model for
the account 1o e considered successful. One such model was
devised in the study of imprinting behavior in chicks and of
object recognition more generally (O'Reilly and Johnson,
1994, 2002,
which objects moved continuously. Based on this experi-

This model viewed a simplified euvironment in

ence, the model developed receptive field representations of
objects that encoded continuous locations in space, thereby
demenstrating a sensieivity (o object continury.

What were the origins of the model's sensitivity 1o object
continuity? First, the network had recurrent excitatory con-

nections and lateral inhibitory connections that allowed
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active units o remain active; specifically, actve units con-
tinued to send activation o themselves by way of the recur-
rent excitatory connections, and they prevented other
compeung units from becoming active by way of the lateral
inhibitory connections. Thus, when an object was presented
as input to the network, certain hidden units became active,
and they tended to stay active even as the object moved
around in the input. Second, the network learned according
to a Mebbian learning rule, which led the model 1o associate
this hidden unit pattern of actvity with the object in different
locations in the input. Thus, whenever the object appeared
in any ol these locadons, the network came to activate the
same units, or the same object representaton. In this way,
with exposure 0 events i the world that conformed to the
principle of continuity, the model developed receprive field
representations of objects that encoded continuous locations
in space, and so learned to “recognize” obiects that moved
continuously in its environment.

One might argue that this model was innately predisposed

to undersiand the continuity of objects (Spelke and Newport,
1997, given that the network was structured “from birth”
with recurrent excitatory and lateral inhibitory connections
and a Hebbian learning rule—all it needed was the typical
experience of viewing objects moving continuously in its
environment. That iy, the model required experience only
I a generic sense, O SUPPOTE AN eXperience-expectant
process (Greenough, Black, and Wallace, 19871 that would
naturally unfold for all members of a species glven the
normal environment avaifable throughout evolutionary
history., However, again, it is not clear what benelits would
be conferred by calling the developmental time course of the

model “mnate.” In contrast, the benefiss of the model should
be clear in providing an explicit, mechanistic account of the
potential origins of our sensitivity w object continuity.

Object pormanence. Several models have been proposed to
account for infants’ apparent sensitivity 1o the permanence
of obyjects, with very dilferent assumptions about the origins
of object-permanence knowledge. At one exwreme, such
knowledge has been built into a network, with target signals
specifving from hirth that hidden objects continue 1o exist
when they are hidden Mareschal, Plunkett, and Harris,
1995}

Bimtted sensitivity to the permanence of abjects without ever

. At the other extreme, a model has demonstrated

actually developing the ability to represent hidden ohjects,
based on the simple origins of the goal of keeping objects in
view [Schlesinger and Barto, 19991 Here, we discuss a model
that hes between these two extremes, in which cobject-
permanence knowledge developed without being prespeci-
fied

IMunakata et al.. 19971 The moded viewed a simplified
environment i which objects disappeared from view behind
occluders and reappeared after the occluders were removed.
Based on this experience, the model became sensitive to the
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permanence of objects, continuing to represent objects even
after they were hidden.

What were the origins of the moded’s knowledge of object
permanence’ As in the object-recognition modet desertbed
earlier, the object-permanence model had recurrent excit-
atory connections that allowed active units to remain active.
Unlike the objectrecognition model, the object-permanence
model also had a goal of predicting what would happen nex
ity environment. Through error-driven learing, the
network acdjusted its weights if its predictions were incorrect,
for example. il the network predicred that an occluded obiect
would not veappear when the occluder was removed, and
then the object did in fact veappear. So, when a visible object
moved out of view, the network gradually learned o use i
recurrent connections (o maintain a representation of the
object, allowing the network o accurately predict its envi-
ronment {and the reappearance of such hidden objects. In
this way, with esposure to events that conformed o the
principle of object permancence, the model provided an
explicit, mechanistic account of the potential origins of our
sensitivity to the permanence of objects and demonstrated
how ebject-permanence knowledge could develop withowt
being innately specibed.

The model also led o the novel prediction that infans
should show greater sensitivity to the permanence of familiar
objects than of novel objects. The model showed this behay-
tor because 1t {ormed stronger represenzations for funiliar
objects, based on changes 1o its connection weights from
repeatedly processing those objects. Those changes o the
connection weights allowed the model to generalize s
knowledge of object permanence w novel obicets, but s
representations for those novel objects were not as strong as
those for familiar olyects. This prediction was conlirmed in
infants, who searched more for familiar objects than lor
novel objects after they were hidden. despite showing robust
preferences for novel objects over familiar objects when they

were visible (Shinskey and Munakata, 2005%

CHANGE

How does change occur? As many researchers
have noted {e.g.. Flavell, 1984 Fischer and Bidell, 1991,
Siegler, 1989), this question is one of the most fundamental
yet unanswered questions in the swdy ol cognitive
development. For example, how do children develop
complex, higher level cognidve abilities in reladvely short
periods of time? Why do children sometimes show non-
Hnear rajectories in their development, such as stagelike
progressions, sensitive periods {or learning, and U-shaped

les

ning curves? The issue of change is not mutually exclusive
from the previously discussed issue of origins. Providing an
explicit model of origing entails specifving mechanisms of
change {unless the model assumes fullfledged knowledge
from the start, an assumpdon that s meonsistent with the
neural network framework and with brain development, not



to mention with the theories of even the most extreme

Hvists!

1ic

So oall the models deseribed and cited 1in the

previcus section also have something o say about change as
well as about origins.

In the newral network framework, change can take place
at multiple levels, including 0 the actvity of unils as actva-
tons are propagated through the network, the connection
welpht changes thar occur during learning, and the emer-
gence ol new lonms that anse from the complex interactions
of elements i the network {as deseribed previously for the
development of representations of object continuity and per-
manencel Neural network models have been used o explore
the mechanisms underlving many aspects of developmenral
change, including stagelike progressions {(McUlelland, {989,
H)f)ﬁ R‘u]mmrx van Koten, and Molenaar, 1996; Thomas,

b P Quinfan et al, ing Lsensitive periods in learning
E%li.\ and Lambon-Re l{\’] 2000: Elman, 1893; McGlelland
1 Robde and Plaut, 1999; Seidenberg and Zevin,
Nunakata, 1998
. Rogers, Rakison, and McUlelland, 2004,
McClelland, 19863 tocus on

models exploring emergent effects in Lummw and concep-

200G, and U-shaped leamning curves
Planken, 19491
Runmielhart ;'end Here, we
et development, specifically how relatively low-level pro-
cesses can lead o the development of higher-level cogmtive
abilities and nonlinear developmental wrajectories. We
consider models exploring how such changes can explain
numierous aspects of children™ word learning.

Learnipg abous words and szaandic calegories. How do children
fearn new words and form appropriate semantic categories
for abjects in the world? Children show parueular behaviors
that have led many researchers w posit high-level, concep-

tal fand possibly mnate) strucrores that guide children’s

earning: however, neural network models have demon-

strated how more basic learning mechamsms could explain

these patterns in children™s behavior. l’m" example, when

learning the name lor a new solid object, 2-3-vear- -olds will

rellably extend that name (o other H(J[K‘ objects that are

similar in shape @ behavior known as the “shape bias”; in

i

contrast, alier fearning the name [or a nonsolid substance,
chifldren will extendt that name w other nonsolid things thae
are sinitar in the material they are made from (the “mate~
1938}

to ditferencate

rial bias™

(Landay, Smith, and Jones, Marcover, very

carly 1n lfe, children are able abstract
semantic categories, such as animals versus artfaces (Mandler

19931,

Behavior in terms of ©

and MceDonough, Some researchers explain this

hildren's early {and possibly innate]
high-level, c'oncu‘ptuai understanding about different onte-
2010, 1989, such as
objects. and substances (Booth and Waxman,
Gergely et al, 1993

resenrchers have used neural network models (o explore the

logical knds of things {Carey, Keil,

annnates,
RS

In contrasy, other

possibitity that these paterns of hehavior could result from
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more basic learning mechanisms thar can extract higher-

stmult with  the lubels

, 20007 and amony objects from
Mareschal and French, 2000:

2003; Quinn and Johnson, 1997;

2004, 2003

that simple learning mechanisms

order regularizies, among sairie

{e.g., Colunga and Smith
the same category (e.g.,
MeClelland and Roge
Rogers and MeCGleHand,

To test the possibiliny

could lead to the emergence of word-learning biases, a

neural network model was trained 1o assoctate perceptual
stimuli with their labels, and then tested on 1ts shape and
material hiases for solids versus nonsolids
Symith, 200

ol perceptual inputs that represented their shape, matenial,

Colunga and

. The model was presented with simuli in terms
and solidiny. Through error-driven learning, the model was
trained to praduce the correct name for each sumulus on
the output laver. The vocabulary the model was wained on
captured several aspects of children’s vocabulary: the number
ol words for solids was greater than the number ol words far
nonsolids, nonselids had a more restriceed range of shapes
than solids, and there were strong but imperfect correlations

between solid objects and names b and

ed on shape,
between nonsolid things and names based on material.

After the nerwork learned how o name 24 stimull, # was
presented with novel solids and nonsolids so that 1s biases
to attend o shape or material could be assessed. With cach
novel stimulus, the network was also presented with groups
of other novel stimuli that were either similar in shape 0 it
or similar in material, The neowork’s shape and material
biases were measured in terms of the internal representa-
tions the network formed for objects in the hidden layer,
which was bidirectionally connected to both the word and
the percepinal Jayers and was also recurrenty connented to
itself. Like children, the network demonsrated a clear shape
bias for solids and a clear material bias for nonsolids. Specifi-
cally, the network’s internal representations for two solid
objects with the same shape but different material were more
similar than the internal representation for two solids with
different shapes but the same material; the opposiwe pattern

was found for nonsolids. Thus, after simply learning to asso-

ciate specific words and specific perceptual teatures, the
nenwvork formed abstract, generalized expectations about the
way different sumuli could be characterized, which corre-
spond to the tvpes of hiases observed in young children’s

1strate how

word learning. These simuladons thus demc
basic Jow-level learning mechanisms could lead to the devel-
opment of abstract higher-order generalizations, such that
one need not invoke possibly innate, conceptual seructures.

Sinilar basic learning mechanisms may support children’s
acquisition of semantc categories, such as animals versus

Neural

semantic categories can be formed through the learning af

plants. nerworks have demonstrated  how such

statistical structure in the environment {e.g., Mareschal and

2000; Quinn and Johnson, 199

I'rench in particular,

373



through p;ztts—'ms of coherent covariation across objects from
the same category {McClelland and Rogers, 2003; Rogers
and \I((‘] land, 2004, 20(

representations and share many properties [e.g., all animals

. When objects have similar

move and make sound an their own, while plangs do peither?,
the properties shared by these items will be maximally coher-
ent and will be a strong force driving learning, because they
drive changes to connection weights in the same direction.
In contrast, idiosyneraric properties {e.g., the fact that some

anmimals can fly but cannot swim, and others do the reverse
drive weights in conflicting directions that tend to cancel

each other out early in learning. Overall, this process leads

the most coherent properties among categories 1o be learned
earliest, and 1t can explain how children progress from more
coarse o more fine-grained levels of differentation in their
category learning. These coherent properties do not need to
be pereeptually salient fe.g., the fact that animals can growl;
as long as they covary coherently, statistical learning mecha-
nisims can use them to guide category learning. In this way,
coherent covariation of propertics can lead perceptually dis-

tinct items {such as birds and hish) o be viewed as part of

the same category, without requiring high-level concepts of

animacy.
Meoreover, these neural networks also illustrate how non-
hli(‘dl developmental prtw;‘(‘mom (such as U-shaped learn-

5 can develop simply through sensitivity to statistical
regularites. In many complex tasks, such as learning 1o cor-
rectly apply regular or irregular verl past-tense construc-

tion, children often secem o “unlearn”™ a correct bhehavior

e.g., saving “goed” after correctly saving “went”} before
Ervin, 19641 These

U-shaped patterns of development have eheited explanations

eventually achieving complete master

in terms of qualitative shifts between different abstract, high-
19924,

hasic learning mechanisms that detect (ohmem covariation

level rule-based svstems {Marcus et al, However,
between properties of different ehjects can also lead to such
U-shaped patterns ol development {Rogers, Rakison, and
MeClelland, 2004y
tion networks described earlier show U-s shaped progressions

. For example, the semantie categoriza-
in how they categorize unusual animals, such as bats (which
are unusual because they do not have feathers, unlike other
exemplars that iyl The newworks first correctly categorize
bats as animals with fur, then incorrectly characterize them
as animals with feathers, and whumately characterize them
correctly again. This U-shaped behavior reflects the coarse-
o-fine property of category development, Early on, the net-

works learn that most animals have fur, thus attribute this

coherent characteristic o all animal exemplars, and cor-
rectly wdentify bats as animals with fur. As the networks learn
progressively finer distinctons, such as the fact that some
animals fly, they again attribute coherent characteristics of
flying (e.g.,

T

flying animals have feathers) o all Aving exem-

plars, Thus, at this point, the networks incorrectly categorize
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baes as flving animals with feathers. Finally, as the networks
learn idiosyncratic properties ol each ammal, they beoome
able to correctly identify bats as Hving amimals with fur aned
not feathers.

Thus these newral networks show how simple learning
mechanisms that pick up on statstical regularites in the
environment can lead to complex nonlinear behaviors and
wr the development of high-level conceptual categories, like
those observed in children.

Age-of-acquisition offects. As in the category-learning example,
language acquisition 18 frequently characternized by nonlin-
ear developmental trajectories. In contrast 1o theories that
inveke innate or high-level stroctures in learning, newral
network models have demonstrated how these dv\‘(-}Empm(—‘rlv
ral trends can be explained by relanvely simple. Jow-level
mechantsms. Another example of nonlinear change in lan-
guage acquusition concerns the age of acquisition (AoA)
effect, a phenomenon in which words learned early in hie
are recognized and pronounced faster than words learned
later in life. Such patterns might saggest the existence of
specialized, time-sensitive leaming systems, However, the
age at which children learn pavdeular words s typicath
confounded with word frequency and word length,

diflicult to interpret AoA effects and their ira'a[)§i<‘aué('an.~ for

making

how children learn {(Zevin and Seidenberg, 20025 Neural
network imodeling, however, allows lor factors su(’h as cumu-
lative frequency and frequency wajectory of words 10 be
manipulated independenty of one another, thereby permu-

ting a detailed analysis of each factor’s potential impact on
lexical development.

To assess whether words learned early in life might enjoy
processing benefis not shared by words learned later, a
series of recurrent backpropagation neural networks were

trained to read nearly 3,000 moenosvilabic words derived

31'0]11 I]éi{.l]l'éli i;mgt.izu;‘r’ (:r')z‘;)m‘a
20021,

Zevin and Seidenbery,
The newtworks consisted of three teedforward lavers:
an ovthographic input layer, a hidden laver, and a phono-
logical output layver. A fourth laver, bidirectionally connected
with the phonological laver, served © improve the accuracy
of the network’s phonological outputs. Training consisted of
I million word preseutations, in which the network might
receive an input ke “FIST™ and would then be required o
produce the phonemes correspondimg to that word, The
frequency of some words in the waining set was manipu-
lated, such that some words were most frequently presented
early in training, while other words were most [requenthy
presented later in training. Crincally, the neswork’s cumula-

tive exposure to words on both the Yearly™ and the “late”
lists was equivalent by the end ol training.

In these models, age of acquisinon was predicted by {re-

ligt were
quickly than those in the “late”™ lists, which

guency wajectory, such that words from the “early”

learned more




were less prevalent at the beginning of waining. However,
by the end of raining, both lists were learned equally well,
and accuracy was at ceiling, thus vielding no lasting AoA
efiect. Why should this ouicome occur? During training, the
network learned o extract regularities in the orthography-
w-phonology mappings that are characteristic of English. As

oy

auli, any benefits conveved by learnmg a word early were
abso passed on to words learned later 1 training. This finding
provides support w the idea that the AoA eliecs seen in
behavioral research may vesult from the confound of cumu-
fathve word frequency with age of acquisition.

However, an extreme reduction in the similanty between
the orthography-to-phonology mappings of “early” hst
words to “late” list words did vield a reliable AoA effect. In
this case. the regularites extracted by the network based on

the “early”™ list—-and the resulting changes in connection

wetghts—-actually dibadvantaged the learning of words with

a very ditferent orthography-to-phonology mapping. The
nerwork was never able w produce the later words as accu-
rately as it had learned the earhiest words, because the regu-
Lrtes extracted by early learning could not be passed on to
words prevalent Luter i raining, In eflect, the connection
weights in the network became spectalized for representing
the early set of orthography-to-phonelegy mappings; despite
later experience with a very different set of mappings, this
ey specialization could never be completely overcome.
I this case, newral network models allowed for an exami-
nation of lnguistie factors that are normally very ditheuit o
dissociate: cumulatve word frequency and frequency wajec-
tory, The results suggested that for nataral languages with
reliable orthography-ro-phonology mappings, cumulative
frequency should influence ultimate levels of skilled reading,
and frequency wajectory should aflect age of acquisition
without any asting AoA ellects on wldmate levels of skilled
reacing. In other words, children should first acquire those
words they encountered  with the highest frequency.
However, this early learning will convey benefits to many

words experienced later, such that this fater learning s also
facilitated by the child’s earlier experience. This process
serves towash owt age-olacquisition effects, such that words
avquired fater share the same processing benefits enjoved by
words acquired at carlier ages, Children should only show a
disproportionate advantage for producing words leared
early in lfe i they are expericnced with greater total
frequenoy.

These predictions were subsequently confirmed in behav-
ioral Tesearch where cumulative frequency and freguency
wrajectory were explicitly dissociated from other characieris-
tics that might influence the ease with which words are pro-

nounced (Zevin and Seidenberg, 2004). Ultmately, these

maockels allowed for an inttal investgatdon of the lactors
mderlving purported AcA cilects before they were cleanty

dissociated in a behavioral experiment. More specifically,
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they permitted direct insight into how, and in what particu-
iar situations, early experience with language might resulein
lasting effects on linguistic behavior,

Susuary orF How Nrurarn Nerworx Mopers Have

Conrripurep  As  preceding sections have  illusurated,
relatvely hasic principles of newral network maodeling can
have profound implications for a variery of developmental
questions, including questions of the origing of knowledge

and mechanisms of developmental change. As we have seen,

nearal nerwork models demonstrate how knowledge of

object permanence and object continuity—knowledge that
is sometimes considered to be innate—can actually arise

acurally from an interaction between carly life experiences
and the basic beginning state of a system {e.g.,

inital excitatory and inhibitory connectivity). We have also

deseribed models that reproduce specific features of language
leamning, including word-learning biases and nonlinear
developmental rrajectories, using simple learning mechanisms
that pick up on statistical regularices in the environment.
The relevance of neural network modeling to sach vasty
different phenomena 5 a testament to this framework’s
Hexibility and hnportance. Furthermore, these models have
demonstrated how specific neural mechanisms can account
for a variety of developmental phenomena, in addition to

generating testable {and subsequenty confirmed; predictions

about children’s behavior.

Challenges Lo the why. what, and how

As in all active areas of science, cach of the aspects of nourai
network modeling that we have discussed has been chal-
lenged in some way. Here, we focus on one bmportant criti-
cism within each of the areas of why, what, and how {see
also discussion in Blman et al., 1996; McClelland and Plauy,
199/&/ O'Reilly and Munakata, 2000; Seidenberg 198
Seidenberg and Zevin, 2006}

CHALLENGES TO Wiy MopeLs Are IMporTaNT A common
criticism of neural network models 15 thar they can do
anvthing, selve any task, and so on; thervefore, ther ability
to simulate human behavior s uninteresting. That s, there
are so many parameters that can be manipulated in a
network that it is guaranteed to work eventually. Because
gening it to work is guaranteed, this process tells us nothing.
Furiher ammunition for this criticism comes from the fact
that several different neural nevwork models may succeed in
simalating the same human behavior, They all work, and
vet they can’t all be right, indicatdng that neural networks
are simply 0o powerful, so a successhul simulation proves
nothing.

Before countering this criticism using specific examples
of neural nerwork models, we first emphasize a general

S5 OF GOGNITIVE DEVELOPM

in terms of




vesponse: Criticisms ehant too mech poreer and foo many parameters
are relevant o any attempts af scienfific theorizing, and are nol unigie
15 the newral network modeling endeavor. One could easily level the
same criticisms at verbal theorles of behavior, for example.
Across a range of domains {attention, memory, language,

. muitiple competing theories can account for the same
behavioral data. And, these verbal theories are wpically
powertul enough to encompass any new piece of behavioral
data that comes along, thanks to the vagueness of constructs
and the existence of multiple free parameters (in the form of
new limitations or capabilitics that can be incorporated inta

the theoryl. Thus verbal theories can be constucted w

explain anvthing, and multiple competing theories can
account for the same data, so the process of developing theo-
ries tells us nothing. Most prople probably would not accept
this conclusion in the domain of scientfic theorizing, and yet
many belicve it w pose a lundamental problem for neural
network models.

We believe that the counterargument to this criticisin as
applied o neural network models is similar to the counter-
argument to this crigcsm as applied t scientfic theorizing
move generally. Compeling theories and models can be evaluated by
many citderia otfer than simply by acctunting for a set of data. People
generally know when a theory feels unsatsfying, even if it 15
able to accownt for some data. For example, il a theory needs
o add a new component to account for each new piece of
data, it will seern more arbitrary than a more unified theory
that requires no such adjustments. Oy il a theory accounts
for data by relying on unspecified constructs, it will seerm less
compelling than a more fully specilied theory. In this way,
the plausibility and specificity of underlying assamptions, as
well as the ease with which data can be accounted for and
predicted, can be evaluated to compare competing theorics.
The same holds true for evaluating competing models. The
neural network framework may support reladvely rapid
progress along these lines, because the models require the
underlying assumptions to be made explicit and because the
assumpiions arc censtrained by both boton-up (biological}

and top-dow

{psychological} information.

A second counterargument to this criticism & that the
number of parameters in neural aetwork simulations may
accurately reflect the diversity of underlving mechanisms
that contribute to behavior, so that neural network models
provide a useful tool for exploring these mechanisms. For
example, in the context of developmental disorders, the
same behavioral deficit mayv arise from any of a number of

distinet underlying causes (Thomas, 2003). Moreover, this
problem is not specific to disorders; any group of individuals
may behave similarly and yet differ in how those behaviors
are produced. The capacity of neural nerwork models w
simulate this phenomenon can thus be viewed as an impor-
tant strength,. Such models allow us 1o formally analyze
multiple causality in a way that 15 not possible with purely
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behavioral measures, by ablowing us o independentdy
manipulate and assess the factors contributing to emergent
hehavior.

Froally, 10 s mmportant to note that many nearal network
models have made their contributions by ot working, that
15, by not simply simulating a partealar behavior thar they
were designed to simulate. For example, neural nenwork
models have been lestoned to simulate fand provide sight
inw} the behavior of patents with brain damage {Plawt
et al, 19496; Farah, O'Reilly, and Vecera, 1993; Cohen et
al., 1994; Iarah and McClelland, 1991 Plaut, 1995; Allen
199%; Heinke and Humphreys, 20053 Such

lesions are performed by removing or dam

and Setdenbe

ging unis or
thelr connections. In these cases, the models are not trained
to simulate such atypical performance. Instead, the models
are wrained o perform correctly, and then they arc lesioned.
Altered patterns of performance emerge from the basic
propertes of the models bllowing damage. Lesions or other
alterations can also be performed during the course of
maodels” development; such models have clucidated the pos-
sibile causes of various developmental disorders {Thonas and
Karmilofl=-Smith, 20072, 2003; Thomas, 200371
2006; Willlams and Da

neural network models (e.g

e

riesch et al,
, 2005 In addinon, failures of

m remembering both specific
events and generalizing across multiple events) have pro-
vided insight into neural divisions of labor {e.g., between the

McCleliand, a lcNaughton,

hippoecampus and neocortex;
and O'Reilly, 19951

Thus nearal neowork models, though powertul, can none-
theless fail and can provide masighits when they do. and the

aluated on

{like purely verbal theories of behaviori can be ¢
grounds other than simply accounting oy a set of data.
Crartences To Wiat Mopees Comprise . Many challenges
have been 1ssued regarding the nuts and bols that we have
deseribed, specifically how well the various elements of
neural models map onto elements in the brain, Critics argue
that the clements of models are simiphistie, missing essenual
aspects of neural communication that render their use
misguided ar best. We believe that there are no quick and
definitive answers to this challenge, but rather prelummary

responses to be further wsted and elaborated over the coming

vears, as part of important progress in the newral netwo
framework.,

One response 3 simply, “Simple 15 good.” That 15, the
simplified elements of neural network models caprure the
essential aspects of newral communication, theveby provid-

ing a eritieal methodological wol for exploring the complexi-
ties of the relation between brain and behavior, We would
otherwise get bogged down in detils not parteuiarly rele-
vant to understanding cognition. An analogy may be found
in the techmque of creating mosaic images from a large col-
lection of smaller images. The details of cach of the smailer



are notl

images fone 15 a flower, another 13 a landscape, et

particularly relevant, and in fact, one could easily lose sight
ol the paint of the image by focusing on these detals, Instead,
it i more appropriate o stand back and see the overall
arage a a shimplified levell Neural nevworks may similarly
provide o useful simplificaton of details, w allow an under-

stuncing of neural funciion and s relevance W cognition.

For example, we can understand the elficacy of a synapse in
terms of a simplified, single value of a connection weight,
mueh as we can understand a collecton of small images in
rerms of the simplificd, overall moesaic. Without such a sim-
phication, we might otherwise get bogged down in all the
details of how synaptic efficacies are determined at the bio-
fagical level {the number of vesicles of neurotransmitier
released by the presviraptic nearon, the alignment and prox-
hannels

imity of release sites and receptors, the efhcacy of ¢

on the postsynapiic neuron, etc,). This degree of hiological
detall mighe cloud the picture of the brain-hehavior relation,
which is instead clarified by the simplifications of the neural
neswork framework,

Of course, the simple-ls-good urgument assumes that the
neural network simplificacons caprure the essential compu-
wtional properties of the biological derails. This assumption
can be tested by including further details into models and
cxpioring their computational significance. In addition, the
appropriateness of the simplifications can be tested by devel-
oping models @ more than one level of complexity. For
example, one simplificatdon i most neural network models
i the unit’ continwous-valued activation wrm {computed
FWhat”

meant © approximare the rate of firing of discrete spikes.

from the ner inpuat as described in the section),
Comparisons of this simplificaton with more deailed models
that actually fire discrete spikes have indicated that the con-
dnuous-valued activatdony do in fact closely approximate
the Bring rates of the more detailed models (' Reilly and
Munakarta, 2000}

Thus the simplificd nature of neural nevwork models may
allonw [or a clearer picture ol the brain-behavior relanon, and
the validity of these simplifications can be tested by develop-

ing models at more than one level of complexity and by

testing the functional relevance of biclogical dewails,

Cracences ro How Monpens Have CoNrrmButeED TG

DEvELOPMENTAL COGNITIVE NEUROSCIE Various

aspects of the specific models we have elaborated, together

with their associated claims, have been challenged {e.g.,
Marcus, 1998; Smith et al.,
(>

. Waxman

Baillargeon and Aguiar, 199

1999, Stadthagen- {x(mmlf z\ABm\m». ‘md Damian, 2
Crhvselinek, Lewds, and Brysbaere, 2064; Booth
2008

challenges will lead to progress in developing better maodels.
g prog pimg

and Huang A general, we be ii{ ve that many of these

Further, the lssuing of such challenges points 1o a strength

of the modeling {ramework-—instandated models can be

subsequently tested on a range of measures,

highiight-
ing their potental Umitadons and suggesting necessary

elaborations and revisions, as well as suggesting critical

empirical tests to contrast competing models. Here we focus

on one eridcism that has been apphied o a range of models,

namely, their failure to generalize (Marcus, 1998; Pinker and
1988,

According to this criticism, newral network models may

Prince,

mimic some aspects of human pertormance, but the bases
for hwmnan and network behavior differ vastdy, Specifically,
humans use rules o govern thelr behavior {e.g., 1o form iiw

past tense of most words, add “ed”), and so they can general-

ize tw new instances {e.g., (o know that

“Blicket”

models use associations to govern their behavior{e.g. ™

the past ense of
neural network
walk™

. and so they cannot generalize

must be “blicketed”}. In conerast,

is associated with “walked

to new instances, Therefore, although neural networks may
numic certain aspects of human performance across a range
of domains, these models fail 1o generalize to new instances

in these domains in the ways that humans can, indicating

fundamental imitation to the models.

We discuss three responses Lo this generalization oriticism
isee also MceClelland and Plaur, 19949 Munakara and
O'Reilly, 2003; Seidenberg and Elman, 1999;
rc.\:porases suggest that the discrepancy between human and

The frst two
fmle)

network generalization has been exaggerated, and the third

response highlights important mechanisms for generaliza-

tion in the nevral network {ramework.

Tirst, it is not clear how much of copniton is driven by
rules as we have just deseribed. Although one might some-
times be able to characterize a person’s behavior in terms of
rules, this fact does not mean that those rules are explicitly
instantiated i and consulted by the person (McClelland and
Plaut, 1999; McClelland, 1989; Rumelbart and\I(( lelland,
1986; Munakata et al., 1997; Thelen and Smith, 1€ _U}iS
point is particelarly relevant for developmental (*ogniti\fc’

nedroscience, where test populations are often preverbal.
nonverbal, or limited in their linguistic skills, and therelore
unable to explicitly indicate whether they are in fact using
rules o govern their behavior. Thus the assumption that
rules govern behavior, and that the neural network frame-
work must therefore incorporate rules o be considered valid,
juestionable,
Nonetheless, with or without rules, humans are certainly
able o generalize their knowledge to new instances, so fail-
ures of neural network madels to do so would seern damning.
However, the claim that neural networks cannot generalize

1o new instances has been based predominanty on s

guided testing methods Marcus, 1998) Tr such tests, neural
networks are trained on a particalar task, but one setof input
units are never activated during this training. At test, those
units are activated for the first time, and the network s tested

on its ability fo generalize what it has learned from training
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fi.e., to respond appropriately o these new instances). This
tvpe of test s misguided for two reasons. First, this test
assumnes that when we are prescmcd with new mstances (e.g.,
the word “bhicket™, this acton activates neurons i our
brains that have never fired before. No evidence supports
this assumption. Instead, extensive evidence indicates that
neural patterns of firing reflect the similarity of inpu

Desimone and Ungerleider, 1989; Tanaka, 19965, sugges
ing that generalization to new instances would occur through
the overlap between patterns of firing to the new instances
and patterns of firing in previous experiences. Second, as
described in the “What” section, the basic nuts and bolts of
neural network {and neural; processing dictate thar unis
must become active to support learning and meaningful
behavior, Therefore, it is not particularly informative to run
stmutations to test the performance of units that have never
become active. In sum, ne evidence supports the idea that
generalizing an existing abillty t© a new stumulus involves the
activation of a pool of never-fired neurons and that neurons
must become active to sapport learning. However, tests of
network generalization have assumed such never-fired pools
and consisted of testing the performance of units that have
never become active.

Under more plausible testing conditions, networks can
generalize to new instances. For example, networks can be
presented with a set of stirmuli and then tested on their ability
to generalize to new instances that acdvate novel combina-
tlons of units that have been active before. Neural networks
have been shown 1o generalize to new instances under such
circumnstances across a range of domains [Colunga and
Smith, 2005; Hinton, 1986; Munakata et al., 1997, O'Reilly
and Munakata, 2000; Plaut et al., 1996; Rougier et al., 2005;
cf. Marcus, 1998% A key [actor in networks™ success

il gen-
eralization {and presurably in humans’ as welli1s the overlap
in representations, or the extent to which a new instance is
represented m a way that overlaps with previously expen-
enced instances, guiding how to respond to the new instance,
Importantly. this overlap may be present in the input-level
representation to the network {e.g., as one might expect in
the auditory input patterns for the new instance of “blicket”
and the familiar instance of “picket™} or in higher-level re-
representations of the input {e.g.. in patterns of activity indi-
cating thata word is a verb). Such higher-level representations
can function like categories, such that once a new instance

l

neework can generalize all its knowledge about the category

s represented appropriately atr these higher levels, the

{verbs, males, objects, ete)) to the new instance. In this way,
the learning mechanisims that build on associations in neural
network modeks support more than simple stimulus-response
kinds of learning; higher-level representations allow stmuli
to be encoded i more abstract and meaningful ways.
Further progress in this area will likely depend upon the
exploration of the factors that influence networks’ abilities
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to form systemalic represeniations at appropriate levels of

abstraction, which can then be used to support meaningful
generalizations across different tasks,

Conelustons

In this chapter we have considered why neural network
modeling 15 an Important methodology for developmental
coguitive neuroscience, what neural network models are,
and how nevral network models have contributed to address-
ing two lundamental issues in the study of development-—the
origing of knowledge and how change occurs. In addition,
we have covered criticisms of neural network modeling
within each of these arcas of why, what, and how. In this
section we will briefly review how models have offered a
UNUEe opportunity o gam msight into cognitve develop-
ment. We will close with thooghts about the most productive
avenues for future work in newral network modeling.

Ag deseribed in the "Why™ section, models provide many

potential advantages, including {1} aliowing contral,

helping us to understand behavior, (3} dealing with complex-
iy, and {4} being explicit. All the models in this chaper ap
each of these advantages; here, we highlight one example
for cach of these advantages. First, the abiliev to conmol the
frequencies of words that a model was exposed o provided
insight into sources of apparcnt age-ol-acquisiton eflects in
children’s word learning {Zevin and Seidenberg, 20023 This
ability to manipulate the training environment i such a
controlled manner and to observe the long-term effects on
language learning is unique to the modeling ramework.
Sccond, the ability to watch representations develop in a
model provided an understanding of how children might
progress from more coarse to more fne-graed semantic
categories and how this process could lead to U-shaped
patterns of development (McClelland and Rogers, 2003,
Rogers & McCleltand, 2004, 2005; Rogers, Rakison, and
McCleliand, 2004
in networks can help us w understand bebavior at a more

This abibity to watch learming unfold

mechanistic level than would otherwise be possible. Third,
the ability to deal with complexity allowed a model to

provide a principled account of the potential onging of

infants sensitivity to object contmuity (O Reilly and Johnson,
1994, 2002 A purely verhal descripuon of the complex
process of developing receptive fields that encode continuous
locations in space would probably appear vague: the model
instead shows how this process can emerge naturally in &
network. Finally, the need to be explicit about various
assumptions in implementing a working model led 1w the
deconstruction of the object permanence concept it spe-
cific learning mechanisms and resuling representations
{Munakata et al., 1997} and motivated novel behavioral
prediciions that were subsequently confirmed  (Shinskey

and Munakata, 2003, Without the forang funcdon of




expliciiness found in the modeling framework, such con-

structs often remain only black boxes i purely verbal
theoretical accounts.
all these

Of course, advantages of the neural network

modehng methodology rely on the existence of careful
empirical studies, which lay out the important phenomena

Models

cannot stand alone and are meant to be put forth as comple-

t be addressed and help test competing models.

mentary frather than superiory w empirical studies, for the

reasons elaborated previously, While this point may seem
obvious, some criticsims of modeling have seemed to assume
that the modeling methodology must be held o a higher
standard than empirical work. Specifically, one criticism 1
that each parameter is not varied and sx-'stmnmic;aily tested
in nenral network modeling, so that it can be hard w know
which parameters are crucial to a network’s behavior
TeCloskey, 1991 Mandler, 1998)

cism ean be applied to empirical work. Typically the param-

. However, the same criti-

eter of interest {e.g., delay in o memory task) s varied and

its effects measured. Other parameters {e.g., the size of the

testing roomy are viewee as less relevant and are not varied.

N L
modeling

progress can be made by subsequendy testing such assump-

In both and empirical methodologies, further
tions about which factors are relevant. Such progress has
been made more rapidly with empirical methodologies,
Because the same testing paradigms are often craploved by
muliiple different rescarchers, helping to selate which

factors are relevant to behavior. As the field of modeling
continues to develop, with new models replicating and build-
g on prior models, similar progress in isolating critical
factors should result.

This argument brings us o our Anal point, which focuses
on the most productive way 1o proceed with neural nerwork
modeling as a methodology, We believe it will be most fruit-
ful il researchers appreciate both the strengths and the limi-
rations of neural network models fand recogmze that some
of the limitations are equally applicable to cmpirical work
and to verbal theorizing), such that subsequent models can
be developed that build on the strengths and begin to address
the limitatons. Although, again, this pointmay seem obvious,
the field has tended to miss this kind of balance, mstead
oscillating berween exireme hype {models should be fully
accepted simply because they work) and exwreme skepticism
beoause

fmodels should be completely rejected simply

someonne shows some limitation in them). As a caution

against extremne hype, we have emphasized specific contri-
butions from nearal network models o our understanding

of the processes of cognitive development {not simply touting
and we have tried o underscore

dike ¢

teria other than simply working. As a caution against extreme

the fact that a model works

the need to evaluate models heories) on a range of cri-

skepticism, we note that all models involve simplifications

and, in urn, Emitations, so i is not particularly constructive

MUNAKATA AND STEDRON! NEURAL NETWORK MODELS OF GOGNITIVE DEVELOPMENT

1o simply peint out Lmitations and argue that maodels shouid
thus be discounted. Rather, it will be most productve if an
understanding of limitatons can support the development
of alternative models, which can then be evaluated on similar
grounds. Again, it may be useful to consider the parallels
with more waditional empirical work and verbal theorizing.
Researchers rarely critigue theories without providing alter-
natives or run studies simply to disprove others’ theories.
Rather.

account for the data, theories that are on the same playing

researchers typically put forth alternate theories to
ficld as the original theories, equally susceptible to eriticism,
festing, and so on. We believe that this same process would
greatly benefit prog

s i the modeling endeavor, That is,

we wall make the most progress by specifving alternative
models that build on existing strengths and begin to address
limitations. In this way. better models will be developed that
tap the unique advantages of this methodology, continuing
10 advance our understanding of developmental cognitive
NEUrosClence.
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